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Injecting turbulence into computational domains is needed in many direct numerical simulations or large eddy
simulations. This task may become difficult in compressible formulations in which acoustic waves must also be
controlled on boundaries. In this paper, three characteristic boundary conditions are compared with inject isolated
vortices or turbulence into the flow and control the acoustic behavior of the boundary at the same time. The first two
methods are the usual characteristic boundary conditions (reflecting and nonreflecting Navier—Stokes characteristic
boundary-condition techniques) used to introduce acoustic waves. The third one is a new boundary condition
(vortical-flow characteristic boundary condition) constructed to introduce turbulence or vortices while being
nonreflecting for acoustic waves. The three methods are tested in two academic cases: 1) injection of an isolated
vortex and 2) injection of isotropic turbulence. These two tests are first performed in a quiet flow and then in a domain
in which acoustic waves propagate toward the inlet and interact with vorticity injection. Results show that the
reflecting Navier—Stokes characteristic boundary condition performs correctly to introduce vorticity waves (vortices
or turbulence) and totally reflect acoustic waves. To introduce vorticity waves and let acoustic waves propagate
without reflection, the vortical-flow characteristic boundary condition is required and the usual Navier—Stokes
characteristic boundary-condition method cannot be used.

1. Introduction

EVELOPING accurate boundary conditions is a major problem

in the simulation of unsteady compressible flow problems such
as astrophysics [1,2], aeroacoustics [3—6], or combustion instabilities
[7,8]. Because acoustic waves propagate at high speed, interact with
the flow, and are not dissipated by modern high-fidelity numerical
methods, controlling their reflection or generation at boundaries has
become a first-order issue in the development of most direct
numerical simulation (DNS) and large eddy simulation (LES) codes
in these fields.

It has been recognized for a long time that the best approach to
handle such problems is to manipulate the amplitude of acoustic and
entropy waves entering the computational domain [9-11]. Most
methods are based on the same principle: they decompose the Navier
—Stokes equations at the boundary to identify the contribution of
waves going into the domain and waves leaving the domain. The
latter are computed using one-sided derivatives and are not modified,
whereas waves entering the domain are changed according to the
boundary condition. The modification of the incoming-wave
amplitudes is the main difficulty, and this is where the methods differ.
Two main classes of methods can be identified:

1) For one-dimensional (1-D) methods, in some approaches, the
amplitude of the incoming waves is fixed by assuming that the flow
can be viewed locally as one-dimensional and inviscid {the local
one-dimensional inviscid (LODI) relations [9,12]}. The influence of
transverse (i.e., parallel to the boundary plane) and viscous terms is
neglected. Such methods are used, for example, in DNS [13-16] or
LES of reacting flows [17-19].

2) For multidimensional methods, the accuracy of 1-D methods is
not sufficient for multiple problems, especially at outlets in which
such methods generate noise when vortices leave the domain. In
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recent years, it has been shown that taking into account transverse
terms in the specification of the incoming waves is an efficient
solution to increase the accuracy of outlet boundary-condition
treatments. Including transverse terms in the incoming-wave ampli-
tudes can be done following various ideas but is not a straightforward
task [20-22]. In most methods, a low-Mach-number expansion is
used to guide the derivation of the incoming-wave amplitude
[23,24].

Although most boundary-condition studies address the problem of
outlets, the present work focuses on one specific issue that is not
discussed often: the specification of inlet conditions in which turbu-
lence must be injected while still maintaining nonreflecting
conditions. This is a critical issue in DNS of jet noise [6,25] or in LES
of combustors [8,26]: for example, when the flow entering the
computational domain must contain a resolved turbulent component
(generated to satisfy proper spectra and energy distribution), but
acoustic waves propagating back to the inlet must not reflect on this
boundary (Fig. 1). If acoustic waves generated in the combustor
reflect on the inlet and interact again with the flow, the whole system
can enter a state of self-sustained oscillations.

For such problems, there is a difficult tradeoff at the inlet in that the
boundary condition must impose the mean flow profile, inject
turbulent perturbations, and still be nonreflecting for acoustic
waves?; for example, imposing the velocity u(x, y, z, ) in an inlet
plane to be exactly equal at each instant to a target value u’(x, y, z, t)
(corresponding to the instantaneous turbulent signal to be injected)
will obviously ensure the proper inlet turbulent flow but will also
totally reflect acoustic waves, because the inlet velocity will not
depend on outgoing waves. On the other hand, any attempt to make
the inlet section perfectly nonreflecting might lead to an inlet velocity
drifting away from the target field.

Finding a proper compromise to define inlet boundary conditions
in which turbulence is injected and acoustic reflections are controlled
is the objective of the present work. To reach this goal, a new
nonreflecting boundary condition adapted to the introduction of
vortical flows and called the vortical-flow characteristic boundary

*This difficulty is a specificity of fully compressible codes; in incom-
pressible or low-Mach-number formulations, the problem does not appear
because acoustic waves are not computed. This is an obvious disadvantage of
compressible codes and a real problem in flows that definitely require
compressible solvers.
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Fig. 1 Combustor nonreflecting inlet: turbulence must be injected, but
acoustic waves must be able to leave with limited reflections.

condition (VFCBC) will be constructed on the basis of recent results
obtained by Prosser [23,24], which allow to separate wave contri-
butions due to acoustic and vorticity waves. VFCBC differs from the
original Navier—Stokes characteristic boundary-condition (NSCBC)
formulation [9], showing that the introduction of vortical flows on a
nonreflecting inlet cannot be done with methods adapted to the
introduction of acoustic waves.

The methods proposed subsequently will be compared in two
relevant test cases: introduction of a single vortex in a quiet domain
and introduction of two-dimensional synthetic turbulence in a quiet
domain.

To illustrate the acoustic behavior of each formulation, the same
test cases will then be repeated in cases in which acoustic waves
propagate back toward the inlet. This study focuses on inlets, and for
these cases, preliminary studies have shown that multidimensional
methods did not bring significant advantages. Therefore, all subse-
quent methods are based on 1-D methods.

II. Nonreflecting Inlet Boundary Condition for
Subsonic Vortical Flows
A. Local One-Dimensional Inviscid Relations at an Inlet

Consider a subsonic inlet in which turbulence must be injected and
assume that the boundary plane is the x,—x; plane. The velocity
components to impose at this inlet will be written as U’, V’, and W".
These target values can be obtained by running a separate 3-D solver
and reading it plane by plane using Taylor’s assumption [27,28] or by
generating a synthetic turbulent signal based on digital filters [29,30]
or on inverse Fourier techniques [31,32]. The NSCBC procedure
[33] s one of the usual methods used to evaluate the amplitude of the
incoming waves L;. This approach is based on the assumption that
the flow is locally one-dimensional and inviscid. LODI equations
link the wave amplitudes L; and the temporal evolution of primitive
Navier—Stokes variables (p, u,, u,, u3, and p). Their expressions are
obtained through characteristic analysis of the one-dimensional
Euler equations [7,9,10]:

ap 1 1
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The wave amplitudes L,, L,, L;, L4, and Ls correspond,
respectively, to the left-traveling acoustic wave (speed u; — ¢), the
entropy wave (speed u,), the two vorticity waves (speed u,), and the
right-traveling acoustic wave (speed u#; + ¢). LODI equations can be

cast for all variables. For example, the LODI equation for tempera-
ture 7T is

T 1
or +—(—L2 + 2= D(Ls +L1)) )
ar yYp 2

For a subsonic inlet, four incoming waves L,, L3, L,, and L5 must be
imposed, which is equivalent to imposing the three velocity
components u; and the temperature 7. Independent of the nature of
the transverse fluctuations V’ and W’ to impose at the inlet, the
natural solution for L; and L, is

— 7
o @)
These conditions are nonreflecting because they do not depend on the
outgoing wave L. The question is now how to construct L, and L5 to
obtain a nonreflecting boundary condition for normal velocity and
temperature.

B. Determination of L, and L; to Inject Acoustic Waves
First, assume that the normal target velocity U’(¢) (the value which
u; must take at the inlet) is due to an acoustic wave entering the
domain. Using the LODI relations (2) and (6), a natural solution is to
write
t

L5=L1—2pcaa—i and L2=(y—1)(L1—,ocaaLZ) ®)

However, this boundary condition is reflecting [34]. To inject an
acoustic wave and avoid reflections, the incoming waves Ls and L,
must not depend on the outgoing wave L, and the proper expression
for Ls is
au’ au’
Ls=—-2pc— d Ly=—(y—1)pc— 9

5 pc— - and L, =—(y—1)pc— ©
where U’ is still the target value. Note that U’ is now the value that u,
should follow in the absence of any reflected wave. If a wave is
reflected toward the inlet, the inlet value u; will differ from U’ and the
inlet will remain nonreflecting.

C. Determination of L, and L; to Inject Vortical Flows (VFCBC)

In the case of turbulence injection, the target velocity U’ is
replaced by a signal corresponding to a vortical flow (vortices, homo-
geneous isotropic turbulence, etc.). A first solution is to use the
boundary condition (8):

t
Ls=1L, —2pc8£x (10)
ot

Condition (10) has been used successfully for academic DNS or LES
with high-order schemes and simple geometries (Guichard et al.
[27]). But for configurations with strong acoustic phenomena such as
combustion in a gas turbine, a nonreflecting condition is often
required. Condition (9) is an obvious possibility, which will be tested
subsequently; results will show that values for velocity and vorticity
obtained with condition (9) do not match the expected values.
Therefore, a better condition was sought.

First, the reason that condition (9) may not be adapted for
turbulence injection must be understood: both turbulence and acous-
tic waves produce velocity and pressure perturbations, but inter-
preting turbulence effects (which are essentially incompressible)
such as acoustic waves [as done in both Egs. (9) and (10)] is the
source of the problem. This question has been analyzed recently in
multiple papers, even though no unique solution was identified
[20,23,35]. For example, by distinguishing acoustic from inertial
contributions and performing an expansion in Mach number on the
Euler equations, Prosser [23] showed that the interaction between
inertial structures (turbulence) and acoustic appears for the zeroth-
order velocity terms and for the second-order pressure terms.

This result allows a simple derivation of a new boundary condi-
tion (VFCBC) to inject turbulence without acoustic reflection or
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interaction. If we only consider the zeroth-order terms and assume
that vortical-flow injection creates no acoustic pressure, the Mach
number expansion of Prosser [23] for the equations of u; and p
becomes

u du, ap _

L, 20 and
8t+u13x1 and

0 (11)

Equation (11) provides an evaluation of the wave amplitudes
needed in NSCBC for an injection of turbulence (at low speed and
low Mach number). These waves are

d ou au’
L = _(_p_ pca—tl) = ch and
(12)
uy o'

ap
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> (8t+’0681) P

and so the proper expressions for the incoming waves Ls and L, are

t

L5:—pcaa—li and L, =0 (13)
Equation (13) shows that Ls differs by a factor of 2 from Eq. (9),
which was the nonreflecting condition for acoustic wave injection.
This is the first surprise of this derivation. A second one is that the
amplitude of the outgoing wave L, should be equal to — L5 according
to Eq. (12). In a subsonic flow, the amplitude L depends on the flow
within the domain and cannot be fixed or assumed to take a
predetermined value like —Ls. Prosser [23] explained this paradox
by recalling that the amplitudes of L, and L5 chosen at the boundary
must be viewed as the values of L, and L for the frozen turbulent
flow that is injected in the absence of any acoustic wave reflected
from the domain to the inlet section. Another way to interpret the
expression of Ls [Eq. (13)] is to view it as the sum of two contri-
butions: 1) the frozen injected turbulent flow and 2) the acoustic
contribution:

L5:—ch+0 (14)
where the first right-hand-side term corresponds to the frozen
injected turbulent flow and the second one corresponds to the acous-
tic contribution. This shows that Eq. (14) is actually a nonreflecting
condition for acoustics, even though the total amplitude of the
injected wave is nonzero. Similarly, the outgoing-wave amplitude L,
can be written

au’

L, =ch+L‘f (15)
where L{ is the amplitude of the outgoing acoustic waves, which
cannot be fixed because it comes from the inside of the domain. As
announced, this implies that the boundary conditions must differ
when injecting acoustic waves (which are compressible signals in
which p and u, signals always are of the same order: p >~ pcu,) or
when injecting turbulence (for which pressure perturbations scale
like the Mach number and vanish, in comparison with pcu, when the
Mach number is small).

To summarize, Table 1 shows that three types of boundary
condition can be used to inject perturbation at an inlet:

1) Method 1 is the reflecting NSCBC formulation.

2) Method 2 is the nonreflecting NSCBC formulation.

3) Method 3 is the nonreflecting VFCBC formulation.

The next sections compare these three methods in various
reference cases.

III. Simple Test Case: Injection
of a 2-D Inviscid Vortex
To illustrate the demonstration of the precedent section and to
compare the methods of Table 1, the configuration of a 2-D inviscid
vortex entering a box is first tested. This is the simplest test case of
vortical-flow injection and its analytical solution can be easily
explicited for comparison with simulations.

A. Single Vortex Problem

_The velocity field of a vortex convected by a steady flow (u =
[U,,0]) is defined using the stream function:

w)_( and ¥ = Cex _r (16)
Uy B —;Twl - P 2}"%

where r=./X? + X3, C is the vortex strength, and r, is a
characteristic radius. From Eq. (16), the radial and tangential velocity
fields are given by

C 2
u,=0 and ugz—zrexp(—rz) a7
I

v

and the distribution of vorticity is

22 2
w(r) = c(zr%) exp(— iz) (18)
rU rU

The momentum equation shows that such a vortex must have a radial
pressure distribution that satisfies

ap _ puj

ar r (1

Assuming that the flow has a constant speed of sound c, the expres-
sion for pressure can be derived as [23,36]

C 2 2
p(r) = poexp (—g (;) exp (— %)) 0)

These results are expressed in a frame of reference (X;, X,)
attached to the vortex. In the absence of viscous dissipation, this
analytical solution can be used for validation. For this test case, the
computational domain is a 2-D square box L x L. Periodic boundary
conditions are defined on the edges x, = +L/2. To avoid any
discrepancies due to the interaction between the vortex and the
periodic edges, the stream function is periodized:

P rk2
y=C)y exp(—ﬁ) 1)

k=—p

where r* = /X? + (X, + kL)?. In the limit p — oo, the stream
function ¥ becomes periodic.

B. Test-Case Conditions

The computational domain is a 2-D square box of dimen-
sion L =1 mm and of resolution 1282. Fluid is air at ambient

Table 1 Incoming-wave amplitudes L, and Ls for subsonic flows for steady state and
vortical-flow injection

Vortical-flow injection

Method Steady state

1: NSCBC reflecting Li=L,L,=0
2: NSCBC nonreflecting L;=0L,=0
3: VFCBC L;y=0L,=0

Ls=1L, 72,00%L2:()/71)(L1 *PC%

Ls = —ZPC%Lz =Y—()/— 1)/70%
Ls=—pc L, =0
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Fig. 2 Vorticity contours o (s™!).

pressure p, = 1013 hPa, and temperature 7, = 300 K. C is set to
5 x 1073 m?/s, leading to a maximum vortex induced velocity of
30 m/s; r, is 0.1 mm; and the mean velocity U, is 100 m/s. For this
test case, setting p =5 in Eq. (21) is enough to ensure a good
periodicity of the flow at x, = +L/2.

A two-step Galerkin finite element scheme is used to compute
convective terms in Navier—Stokes equations. This scheme is called
two-step Taylor—Galerkin version C [37] and is combined with a
two-step Runge—Kutta method for time integration. It is third orderin
space and time and has a low dissipative error.

C. Results

Figures 2 and 3 show a series of vorticity and pressure contour
plots comparing the new boundary condition VFCBC (method 3)
with the two NSCBC approaches (methods 1 and 2). Figure 4
presents the evolution of the vorticity and the pressure drop with time
atthe inlet of the domain. The NSCBC reflecting boundary-condition
solution matches the analytical solution perfectly. In contrary, strong
deformations of the contour plot are observed in the NSCBC
nonreflecting case, showing that this boundary condition is not
adapted to inject a vortical wave. The VFCBC approach significantly
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Fig. 3 Pressure contour:

reduces the observed errors. Pressure and vorticity contours remain
symmetrical as the vortex traverses the boundary. In Fig. 4a, the
vorticity curve matches the analytical solution perfectly. Only an
underestimation of the pressure drop by 10 to 15% can be observed in
the center of the vortex.

IV. Spatially Decaying Turbulence
in a 2-D Periodic Box
The test case of the spatially decaying turbulence has been retained
to evaluate the ability of the three methods of Table 1 to impose
turbulent inlet boundary conditions, respecting correct statistics. In

s P — P, in pascals.

practice, at every time step, an homogeneous isotropic turbulent flow
is injected at the inlet of a 2-D square box. This section first explains
the methodology used to compute the synthetic turbulent signal
entering the domain and then compares instantaneous turbulent
fields and statistics for the three methods: reflecting NSCBC
(method 1), nonreflecting NSCBC (method 2), and VFCBC
(method 3).

A. Methodology for the Turbulence Injection

To generate the artificial turbulent flow entering the periodic
domain, an extension of the Kraichnan method [38,39] was derived.
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The flow is directly written in physical space, but instead of
decomposing the velocity field in Fourier modes, a formulation
based on the stream function is used to make it periodic. The turbu-
lent flow is described as the sum of N periodic Gaussian vortices
randomly placed in a 2-D box of dimension L; x L,. Periodicity is
ensured by summing the stream function over 2p + 1 boxes (p
boxes over and p boxes below the computational box). Therefore,
the stream function is written

N
W(x,x) =) Y,(x, %) with
n=0

p ricLZ
l/fn(xlixz) = Cn Z CXp(— 27‘2 )

k=—p vn

(22)

where

rh=V(x; —x,)* + (x; — Xy, + kL,)?

To ensure homogeneity, the position of each vortex (x,,,x,,) is
chosen from a 2-D uniform distribution. The vortices’ strengths C,,
and the inverse values of the characteristic radii r;, are generated
using isotropic Gaussian distributions of standard deviations C,, and
.. The parameters C, and r,, must be set so that the desired length
scale and turbulent intensity would be obtained in the limit N — oo.
Using Eq. (22), the velocity field u and the vorticity field w can be
easily calculated, as well their statistics. Assuming that N — oo and
ryo < Ly and L,, it can be shown that the expressions of the
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turbulent kinetic energy K, and the dissipation rate €, are

_ (@ +iig) _ NG

K =
0 2 2L,L,

K,
and  €; = 2vy@”? = 4v, r—2° (23)

v0

Figure 5a presents a vorticity field generated with this technique in
a 2-D square box of dimension L = 1 mm. The parameter for this
example are N =10000, p=5, r,=5.10"m, and K,=
100 m?/s2. The grid resolution is 1282. As expected, the periodicity
on the box edges x, = +L/2 is respected. Figure 5b shows the
statistic distribution of #| and u5. For this number of vortices, the
flow has a good degree of isotropy.

This frozen turbulence is injected in the domain at the mean
velocity U, using Taylor’s assumption. Note that this method does
not require any inverse Fourier transform or digital filter algorithm,
which makes it very simple to implement in a solver to generate 2-D
turbulent boundary conditions. Moreover, it does not require the
construction of a two-dimensional turbulent field: only the flow on
the inlet patch is computed at every time step. This is another
advantage in terms of memory usage.

B. Results

The domain is a 2-D square box of dimension L = 1 mm with a
resolution of 1282. The spanwise direction is periodic. A reflecting
boundary condition is imposed on the outlet [9]. Numerical methods
are the same as in Sec. IIL.B. The configuration can be viewed as a
simple model for the inlet pipe of a combustor. Fluid is air at ambient
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Fig. 4 Evolution of vorticity and pressure versus time at the inlet of the computational domain (x; = 0 and x, = 0).
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Fig. 5 Example of a 2-D periodic turbulent field generated with the potential method in a 1 x 1 mm box.
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pressure p, = 1013 hPa and temperature 7, = 300 K. The mean
velocity is U; = 100 m/s. The simulation duration corresponds to a
physical time 7 = 5(U,/L). Therefore, the dimensions of the box
containing the injected turbulent flow are L; = 5L and L, = L. The
other parameters are N = 50,000, p =35, r,=5.10 m, and
Ky, = 100 m?/s.

Figure 6 presents instantaneous vorticity and pressure fields for the
three methods. Vorticity fields are nearly identical for the VFCBC
and the reflecting NSCBC simulation, whereas the nonreflecting
NSCBC simulation generates higher levels of vorticity. Conclusions
concerning pressure are similar. The reflecting NSCBC (method 1)
and VFCBC (method 3) simulations generate very low pressure
fluctuations (less than 500 Pa), whereas the nonreflecting NSCBC
simulation (method 2) leads to longer pressure oscillation levels.

The averaged properties of the turbulent field are displayed in
Fig. 7. First, for the reflecting NSCBC and the VFCBC methods,
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Fig. 7 Streamwise evolution of the mean properties of the turbulence.
Comparison of the three boundary conditions.

the injection levels of the kinetic energy K and dissipation rate €
correspond to the theoretical values K, and ¢, given by Eq. (23).
Turbulence decays along the streamwise direction for the two
methods. On the other hand, the nonreflecting NSCBC method
presents important discrepancies. The levels of € and K at x; =0
are more than twice the theorical values K, and €j; just down-
stream of the inlet (x = 0.1 mm), the curve of K presents a non-
physical production of kinetic energy. It is also of interest to
analyze pressure fluctuations for the three methods. The order of
pressure fluctuations in a turbulent flow is typically equal to pu?.
It is very low in comparison with an acoustic wave, in which
pressure perturbations scale like pcu). Therefore, for a compress-
ible solver, it is crucial that the formulation of the turbulent inlet
boundary condition generates as little noise as possible. Figure 7c
presents the streamwise evolution of the pressure fluctuations
normalized with the turbulent dynamic pressure pyK, for the
three methods. Results observed on the instantaneous pressure
fields (Fig. 6) are confirmed: the nonreflecting NSCBC simula-
tions (method 2) generates abnormal levels of pressure fluctua-
tions in the whole domain. The VFCBC (method 3) and the
reflecting NSCBC methods (method 1) significantly improve
these results.

V. Acoustic Properties of Inlet Boundary Conditions

The two previous sections demonstrate similar abilities for the
VFCBC (method 3) and the reflecting NSCBC (method 1)
formulations to inject vortical flows with correct dynamic statistics
(K,€,...). The two methods, however, have different acoustic
behaviors. The reflecting NSCBC inlet totally reflects acoustic
waves, whereas a VFCBC formulation is written so that acoustic
waves can leave the computational domain. This section illustrates
the latter key point. In the two previous sections (vortex and
turbulence injection), boundary conditions were tested by injecting
vortical flows into a quiet domain. In the present section, the same
tests are repeated but the domain is not quiet anymore: acoustic
perturbations are added to investigate their effects on the inlet
boundary condition.

A. Injection of a 2-D Inviscid Vortex with an Acoustic Disturbance

For this test, an acoustic wave propagating toward the inlet
interacts with a vortex entering the computational domain. The
vortex characteristics and the computational domain are similar to
the first section. The initial acoustic perturbation has a Gaussian
shape and is centered in the middle of the studied domain. It
corresponds to a left-traveling wave in which fluctuations of pressure
and speed at time ¢ = 0 are such that

Pac = —PoCollac (24)
where p,. = p.of(x) and f(x) is a Gaussian perturbation,

(x) — xIO)Z)
o2

f) = exp(—

so that

Uye = _Mf(x) = _uacof(x)
PoCo

For this problem, p,o = 1000 Pa and u,, = 2.44 m/s.

Figures 8 and 9 show a series of vorticity and pressure contour
plots comparing the new boundary condition VFCBC with the two
NSCBC approaches (reflecting and nonreflecting). The scales are the
same as in Figs. 2 and 3. In Fig. 9, positive pressure variation
contours are represented with dashed lines to visualize the wave
front. As expected, the acoustic wave is reflected by the inlet in the
case of the reflecting NSCBC method (Fig. 9a), whereas there is no
reflection in the case of the two nonreflecting NSCBC and VFCBC
methods (Figs. 9b and 9c). The NSCBC nonreflecting method
(method 2) is again disqualified by this test case. In Figs. 8b and 9b,
the vortex contours are strongly disturbed by the inlet and the
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Fig. 8 Vorticity contours o (s™!).

acoustic wave. The NSCBC reflecting condition (method 1) solution
is also affected by the presence of the acoustic wave: after the passage
of the acoustic perturbation, deformations appear on the vorticity
contours (Fig. 8a). The VFCBC method (method 3) seems to be less
sensitive to the perturbation. The solution is only disturbed for a short
moment when the vortex and the wave interact.

B. Interaction Between Spatially Decaying Turbulence and a
Harmonic Acoustic Wave

To investigate turbulence injection in the presence of acoustics,
the outlet pressure is pulsated and harmonic acoustic waves

propagate from the reflecting outlet to the inlet in which turbulence is
injected. The parameters of the injected turbulence and the
computational domain are the same as for the second test case
(Fig. 10). The acoustic excitation induces a pressure perturbation p,.
on the outlet x; = L:

pac(Ls X2, t) = Paco Sin(Z”fot) (25)

where f|, is the frequency of the acoustic wave. For this problem,
fo =259500 Hz and p,,, = 1000 Pa. The value of f,, corresponds
to the three-quarter-wave mode of the computational box.
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. k,
pac(xlﬂxbz) = Paco Sln(Zﬂfol‘-‘rﬁ(Xl _L)) (27)

where ky = 27f,/co. The rms acoustic pressure +/p2. is constant

and equal to p,.o/ /2.

In the case of the reflecting NSCBC method (method 1),
waves are reflected on the extremities of the box. The superposition
of the waves propagating in the two directions generates the
development of a stationary longitudinal mode. Spatial and temporal
variations may be decoupled by writing

Pac (X1, X2, 1) = R(p,,(xy) e~ 27h0") (28)

where 2 = —1, p,, is a complex number and R() designates the
real part of a complex number. For a low Mach number (M = u, /c)
and for acoustically closed boundary conditions [u,.(x; =0) =0
and p,.(x; = L) = p,sin(2rfyt)], an analytical solution for p,
exists:

eib+x1 + eib-xi

pw(xl) = Paco 6iﬁ+L + eiﬁ,L (29)

where B_ =2nf,/((M — 1)cy) and B, =27fy/((M + 1)c) are
the wave numbers for the acoustic waves, respectively, propagating
toward the inlet and the outlet. The rms acoustic pressure is not
constant, but depends on x;:

VL) = | Petpats) (30)

where p}(x,) is the conjugate complex of p,,.

Figure 11 presents instantaneous vorticity and pressure fields
for the three methods. Vorticity fields in Figs. 6 and 11 are iden-
tical. Contrary to the turbulent flow, the acoustic wave is a 1-D
fluctuation and it does not produce any vorticity. Differ-
ences between the two test cases actually appear on the pressure
fields. In Fig. 11, the acoustic 1-D pressure field p,. is disturbed by
pressure contribution due to the turbulent flow. To more
quantitatively evaluate the contributions of the two phenomena,
pressure profiles at x, =0 and r =40 us are plotted in Fig. 12.
In Fig. 12a, the reflecting NSCBC solution is compared with
the stationary longitudinal mode calculated with Egs. (28) and (29).
In Figs. 12b and 12c pressure profiles obtained with the non-
reflecting NSCBC and VFCBC methods are compared with the
acoustic plane wave propagating toward the inlet [Eq. (27)]. For
the reflecting NSCBC method and VFCBC, the contribution
of the turbulent flow to the pressure fluctuations is low and the
pressure profile is very close to the acoustic pressure. Moreover,
turbulence injected with the nonreflecting NSCBC is very noisy and
turbulent pressure fluctuations reach the same level as the acoustic
pressure.

Figure 13 presents the average properties of the flow versus
distance to the injection plane. For the nonreflecting NSCBC and
VFCBC methods, the kinetic energy K, is not disturbed by the
acoustic wave: the acoustic velocity u,, created by the pulsation is
much smaller than the turbulent velocity of the flow and does not
modify K, significatively. In the case of the reflecting NSCBC
simulation, the three-quarter-wave mode locally generates high
levels of acoustic velocity fluctuations that modify the field of kinetic
energy (Fig. 13a). As expected, the dissipation rate in Fig. 13b is
identical to the test case without acoustic pulsation for all three
methods, because the pulsating outlet induces a 1-D acoustic wave
that does not generate vorticity.

For this test case, the average fluctuating pressure in Fig. 13c
is normalized by p,./+/2. Contrary to the velocity, the acous-
tic perturbation generates much higher pressure fluctuations than
the turbulence. Typically, for the VFCBC method, pressure
fluctuations remain nearly constant and equal to the theoretical
value p,o/ V2, corresponding to the solution of the acoustic
problem with a nonreflecting inlet. The nonreflecting NSCBC
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Fig. 12 Streamwise evolution of the mean properties of the turbulent

flow coupled to the harmonic wave f;,. Comparison of the three boundary
conditions.

method creates levels of pressure that are too high in comparison with
the theory. These discrepancies may be explained by the fact that this
boundary condition generates levels of turbulent pressure
fluctuations that are not negligible compared with the acoustic
pressure fluctuations. The theoretical curve corresponding to the
three-quarter-wave mode is shown by a solid line in Fig. 13c. It
matches the curve corresponding to the reflecting NSCBC
simulation. Differences only occur when the average fluctuating
pressure is close to zero and reaches the same order as the turbulent
dynamic pressure pKj.
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flow coupled to the harmonic wave f,. Comparison of the three boundary
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VI. Conclusions

Introducing turbulent fluctuations in DNS or LES is required for
multiple applications. This task becomes difficult in compressible
solvers in which boundary conditions must allow turbulence injec-
tion but also control of acoustic waves. This paper compares three
boundary conditions for compressible solvers to inject vortices or
turbulence through an inlet while controlling reflections (all methods
use characteristic approaches):

1) Method 1 is a fully reflecting method based on the NSCBC
technique.

2) Method 2 is a fully nonreflecting method based on the NSCBC
technique; this method is the classical perfectly nonreflecting
approach for acoustic waves.

3) Method 3 is a new nonreflecting method called VFCBC
(vortical-flow characteristic boundary conditions) which was devel-
oped for this work.

The three methods are systematically compared on two cases of
growing complexity: 1) a two-dimensional vortex entering a quiet
domain and 2) a two-dimensional synthetic turbulent flow entering a
quiet domain.

Tests are then repeated by adding an acoustic wave interacting
with the inlet for the 2-D vortex and a harmonic wave injected by the
outlet for the turbulent case. Results show that method 2, which is
well suited to let acoustic waves propagate through an inlet without
reflections, is not adapted to introducing vortices or turbulence: the
vorticity field is distorted during the vorticity wave introduction.
Method 1 allows introducing vortices or turbulence, but totally
reflects any acoustic wave hitting the outlet at the same time.
Method 3 performs as well as method 1 for vorticity waves, but
allows outgoing waves to leave the domain without reflections.
Methods 1 and 3 are simple to implement and should be useful for
LES and DNS of compressible flows such as jet noise, cavity noise,
combustion instabilities in combustion chambers, etc.

Acknowledgments

We thank Laurent Selle (Institut de Mécanique des Fluides de
Toulouse, Centre National de la Recherche Scientifique) for helpful
discussions and the Centre Européen de Recherche et de Formation
Avancée en Calcul Scientifique computational fluid dynamics (CFD)
team staff for their scientific and technical support about the CFD
code AVBP. The first author gratefully acknowledges the funding by
Air Liquide and the support of Centre Informatique National de
I’Enseignement Supérieur for computing time.

References

[1] Thompson, K. W., “Time Dependent Boundary Conditions for

Hyperbolic Systems,” Journal of Computational Physics, Vol. 89,

No. 2, 1990, pp. 439-461.

doi:10.1016/0021-9991(90)90152-Q

Grappin, R., Léorat, J., and Buttighoffer, A., “Alfvén Wave

Propagation in the High Solar Corona,” Astronomy and Astrophysics,

Vol. 362, 2000, pp. 342-358.

Freund, J. B., “Proposed Inflow/Outflow Boundary Condition for

Direct Computation of Aerodynamic Sound,” AIAA Journal, Vol. 35,

No. 4, 1997, pp. 740-742.

doi:10.2514/2.167

Colonius, T., “Numerically Nonreflecting Boundary and Interface

Conditions for Compressible Flow and Aeroacoustic Computations,”

AIAA Journal, Vol. 35, No. 7, 1997, pp. 1126-1133.

doi:10.2514/2.235

Colonius, T., and Lele, S. K., “Computational Aeroacoustics: Progress

on Nonlinear Problems of Sound Generation,” Progress in Aerospace

Sciences, Vol. 40, No. 6, 2004, pp. 345-416.

doi:10.1016/j.paerosci.2004.09.001

Bogey, C., and Bailly, C., “Effects of Inflow Conditions and Forcing on

Subsonic Jet Flows and Noise,” AIAA Journal, Vol. 43, No. 5, 2005,

pp- 1000-1007.

doi:10.2514/1.7465

Poinsot, T., and Veynante, D., Theoretical and Numerical Combustion,

2nd ed., R. T. Edwards, Philadelphia, 2005.

Schmitt, P., Poinsot, T. J., Schuermans, B., and Geigle, K., “Large-

Eddy Simulation and Experimental Study of Heat Transfer, Nitric

Oxide Emissions and Combustion Instability in a Swirled Turbulent

High Pressure Burner,” Journal of Fluid Mechanics, Vol. 570, 2007,

pp. 17-46.

doi:10.1017/S0022112006003156

Poinsot, T., and Lele, S., “Boundary Conditions for Direct Simulations

of Compressible Viscous Flows,” Journal of Computational Physics,

Vol. 101, No. 1, 1992, pp. 104-129.

doi:10.1016/0021-9991(92)90046-2

[10] Thompson, K. W., “Time Dependent Boundary Conditions for
Hyperbolic Systems,” Journal of Computational Physics, Vol. 68,
No. 1, 1987, pp. 1-24.

[2

—

3

[t}

[4

=

[5

[t}

[6

—

[7

—

[8

—

[9

—



http://dx.doi.org/10.1016/0021-9991(90)90152-Q
http://dx.doi.org/10.2514/2.167
http://dx.doi.org/10.2514/2.235
http://dx.doi.org/10.1016/j.paerosci.2004.09.001
http://dx.doi.org/10.2514/1.7465
http://dx.doi.org/10.1017/S0022112006003156
http://dx.doi.org/10.1016/0021-9991(92)90046-2

1722

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

GUEZENNEC AND POINSOT

doi:10.1016/0021-9991(87)90041-6

Giles, M., “Nonreacting Boundary Conditions for Euler Equation
Calculations,” AIAA Journal, Vol. 28, No. 12, 1990, pp. 2050-2058.
doi:10.2514/3.10521

Moureau, V., Lartigue, G., Sommerer, Y., Angelberger, C., Colin, O.,
and Poinsot, T., “High-Order Methods for DNS and LES of
Compressible Multi-Component Reacting Flows on Fixed and Moving
Grids,” Journal of Computational Physics, Vol. 202, No. 2, 2005,
pp. 710-736.

doi:10.1016/].jcp.2004.08.003

Poinsot, T., Veynante, D., and Candel, S., “Quenching Processes and
Premixed Turbulent Combustion Diagrams,” Journal of Fluid
Mechanics, Vol. 228, 1991, pp. 561-605.
doi:10.1017/S0022112091002823

Baum, M., Poinsot, T., Haworth, D., and Darabiha, N., “Using Direct
Numerical Simulations to Study H,/0,/N, Flames with Complex
Chemistry in Turbulent Flows,” Journal of Fluid Mechanics, Vol. 281,
1994, pp. 1-32.

doi:10.1017/S0022112094003010

Jiménez, C., Cuenot, B., Poinsot, T., and Haworth, D., “Numerical
Simulation and Modeling for Lean Stratified Propane-Air Flames,”
Combustion and Flame, Vol. 128, Nos. 1-2, 2002, pp. 1-21.
doi:10.1016/S0010-2180(01)00328-5

Lignell, D. O., Chen, J. H., Smith, P. J., Lu, T., and Law, C. K., “The
Effect of Flame Structure on Soot Formation and Transport in Turbulent
Nonpremixed Flames Using Direct Numerical Simulation,” Combus-
tion and Flame, Vol. 151, Nos. 1-2, 2007, pp. 2-28.
doi:10.1016/j.combustflame.2007.05.013

Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.-U.,
Krebs, W., Prade, B., Kaufmann, P., and Veynante, D., “Compressible
Large-Eddy Simulation of Turbulent Combustion in Complex
Geometry on Unstructured Meshes,” Combustion and Flame,
Vol. 137, No. 4, 2004, pp. 489-505.
doi:10.1016/j.combustflame.2004.03.008

Roux, S., Lartigue, G., Poinsot, T., Meier, U., and Bérat, C., “Studies of
Mean and Unsteady Flow in a Swirled Combustor Using Experiments,
Acoustic Analysis and Large Eddy Simulations,” Combustion and
Flame, Vol. 141, Nos. 1-2, 2005, pp. 40-54.
doi:10.1016/j.combustflame.2004.12.007

Sengissen, A., Giauque, A., Staffelbach, G., Porta, M., Krebs, W.,
Kaufmann, P., and Poinsot, T., “Large Eddy Simulation of Piloting
Effects on Turbulent Swirling Flames,” Proceedings of the Combustion
Institute, Vol. 31, No. 2, 2007, pp. 1729-1736.
doi:10.1016/j.proci.2006.07.010

Yoo, C., Wang, Y., Trouvé, A., and Im, H., “Characteristic Boundary
Conditions for Direct Simulations of Turbulent Counterow Flames,”
Combustion Theory and Modeling, Vol. 9, No. 4, 2005, pp. 617-646.
doi:10.1080/13647830500307378

Yoo, C., and Im, H., “Characteristic Boundary Conditions for
Simulations of Compressible Reacting Flows with Multidimensional,
Viscous, and Reaction Effects,” Combustion Theory and Modeling,
Vol. 11, No. 2, 2007, pp. 259-286.

doi:10.1080/13647830600898995

Lodato, G., Domingo, P., and Vervisch, L., “Three-Dimensional
Boundary Conditions for Direct and Large-Eddy Simulation of
Compressible Viscous Flow,” Journal of Computational Physics,
Vol. 227, No. 10, 2008, pp. 5105-5143.
doi:10.1016/].jcp.2008.01.038

Prosser, R., “Improved Boundary Conditions for the Direct Numerical
Simulation of Turbulent Subsonic Flows 1: Inviscid Flows,” Journal of
Computational Physics, Vol. 207, No. 2, 2005, pp. 736-768.
doi:10.1016/].jcp.2005.01.027

Prosser, R., “Towards Improved Boundary Conditions for the DNS and
LES of Turbulent Subsonic Flows,” Journal of Computational Physics,
Vol. 222, No. 2, 2007, pp. 469-474.

doi:10.1016/].jcp.2006.09.006

Bogey, C., and Bailly, C., “Computation of a High Reynolds Number
Jet and Its Radiated Noise Using Large Eddy Simulation Based on
Explicit Filtering,” Computers and Fluids, Vol. 35, No. 10, 2006,

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

(391

pp. 1344-1358.

doi:10.1016/j.compfluid.2005.04.008

Priere, C., Gicquel, L. Y. M., Gajan, P., Strzelecki, A., Poinsot, T., and
Bérat, C., “Experimental and Numerical Studies of Dilution Systems
for Low Emission Combustors,” AIAA Journal, Vol. 43, No. 8, 2005,
pp- 1753-1766.

doi:10.2514/1.14681

Guichard, L., Réveillon, J., and Hauguel, R., “Direct Numerical
Simulation of Statistically Stationary One- and Two-Phase Turbulent
Combustion: A Turbulent Injection Procedure,” Flow, Turbulence and
Combustion, Vol. 73, No. 2, 2004, pp. 133-167.
doi:10.1023/B:APPL.0000049273.27776.f5

Domingo, P., Vervisch, L., and Réveillon, J., “DNS Analysis of
Partially Premixed Combustion in Spray and Gaseous Turbulent
Flame-Bases Stabilized in Hot Air,” Combustion and Flame, Vol. 140,
No. 3, 2005, pp. 172-195.

doi:10.1016/j.combustflame.2004.11.006

Klein, M., Sadiki, A., and Janicka, J., “Investigation of the Influence of
the Reynolds Number on a Plane Jet Using Direct Numerical
Simulation,” International Journal of Heat and Fluid Flow, Vol. 24,
No. 6, 2003, pp. 785-794.

doi:10.1016/S0142-727X(03)00089-4

Klein, M., Sadiki, A., and Janicka, J., “A Digital Filter Based
Generation of Inflow Data For Spatially Developing Direct Numerical
or Large Eddy Simulations,” Journal of Computational Physics,
Vol. 186, No. 2, 2003, pp. 652-665.
doi:10.1016/S0021-9991(03)00090-1

Smirnov, A., Shi, S., and Celik, 1., “Random Flow Generation
Technique for Large Eddy Simulations and Particle-Dynamics
Modeling,” Journal of Fluids Engineering, Vol. 123, No. 2, 2001,
pp- 359-371.

doi:10.1115/1.1369598

Lee, S., Lele, S., and Moin, P., “Simulation of Spatially Evolving
Turbulence and the Applicability of Taylor’'s Hypothesis in
Compressible Flows,” Physics of Fluids A, Vol. 4, No. 7, 1992,
pp- 1521-1530.

doi:10.1063/1.858425

Poinsot, T., Echekki, T., and Mungal, M. G., “A Study of the Laminar
Flame Tip and Implications for Premixed Turbulent Combustion,”
Combustion Science and Technology, Vol. 81, Nos. 1-3, 1992, pp. 45—
73.

doi:10.1080/00102209208951793

Kaufmann, A., Nicoud, F., and Poinsot, T., “Flow Forcing Techniques
for Numerical Simulation of Combustion Instabilities,” Combustion
and Flame, Vol. 131, No. 4, 2002, pp. 371-385.
doi:10.1016/S0010-2180(02)00419-4

Yoo, C. S, and Im, H. G., “Characteristic Boundary Conditions for
Simulations of Compressible Reacting Flows with Multi-Dimensional,
Viscous, and Reaction Effects,” Combustion Theory and Modeling,
Vol. 11, No. 2, 2007, 259-286.

doi:10.1080/13647830600898995

Colonius, T., Lele, S., and Moin, P., “The Free Compressible Vortex,”
Journal of Fluid Mechanics, Vol. 230, 1991, pp. 45-73.
doi:10.1017/S0022112091000708

Colin, O., and Rudgyard, M., “Development of High-Order Taylor-
Galerkin Schemes for Unsteady Calculations,” Journal of Computa-
tional Physics, Vol. 162, No. 2, 2000, pp. 338-371.
doi:10.1006/jcph.2000.6538

Celik, I., Yavuz, 1., and Smirnov, A., “Large Eddy Simulations of In-
Cylinder Turbulence for Internal Combustion Engines: A Review,”
International Journal of Engine Research, Vol.2,No.2,2001, pp. 119—
148.

doi:10.1243/1468087011545389

Kraichnan, R., “Diffusion by a Random Velocity Field,” Physics of
Fluids, Vol. 13, 1970, pp. 22-31.

doi:10.1063/1.1692799

C. Bailly
Associate Editor


http://dx.doi.org/10.1016/0021-9991(87)90041-6
http://dx.doi.org/10.2514/3.10521
http://dx.doi.org/10.1016/j.jcp.2004.08.003
http://dx.doi.org/10.1017/S0022112091002823
http://dx.doi.org/10.1017/S0022112094003010
http://dx.doi.org/10.1016/S0010-2180(01)00328-5
http://dx.doi.org/10.1016/j.combustflame.2007.05.013
http://dx.doi.org/10.1016/j.combustflame.2004.03.008
http://dx.doi.org/10.1016/j.combustflame.2004.12.007
http://dx.doi.org/10.1016/j.proci.2006.07.010
http://dx.doi.org/10.1080/13647830500307378
http://dx.doi.org/10.1080/13647830600898995
http://dx.doi.org/10.1016/j.jcp.2008.01.038
http://dx.doi.org/10.1016/j.jcp.2005.01.027
http://dx.doi.org/10.1016/j.jcp.2006.09.006
http://dx.doi.org/10.1016/j.compfluid.2005.04.008
http://dx.doi.org/10.2514/1.14681
http://dx.doi.org/10.1023/B:APPL.0000049273.27776.f5
http://dx.doi.org/10.1016/j.combustflame.2004.11.006
http://dx.doi.org/10.1016/S0142-727X(03)00089-4
http://dx.doi.org/10.1016/S0021-9991(03)00090-1
http://dx.doi.org/10.1115/1.1369598
http://dx.doi.org/10.1063/1.858425
http://dx.doi.org/10.1080/00102209208951793
http://dx.doi.org/10.1016/S0010-2180(02)00419-4
http://dx.doi.org/10.1080/13647830600898995
http://dx.doi.org/10.1017/S0022112091000708
http://dx.doi.org/10.1006/jcph.2000.6538
http://dx.doi.org/10.1243/1468087011545389
http://dx.doi.org/10.1063/1.1692799

