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Injecting turbulence into computational domains is needed in many direct numerical simulations or large eddy

simulations. This task may become difficult in compressible formulations in which acoustic waves must also be

controlled on boundaries. In this paper, three characteristic boundary conditions are compared with inject isolated

vortices or turbulence into the flow and control the acoustic behavior of the boundary at the same time. The first two

methods are the usual characteristic boundary conditions (reflecting and nonreflecting Navier–Stokes characteristic

boundary-condition techniques) used to introduce acoustic waves. The third one is a new boundary condition

(vortical-flow characteristic boundary condition) constructed to introduce turbulence or vortices while being

nonreflecting for acoustic waves. The three methods are tested in two academic cases: 1) injection of an isolated

vortex and2) injection of isotropic turbulence. These two tests arefirst performed in a quietflowand then in a domain

in which acoustic waves propagate toward the inlet and interact with vorticity injection. Results show that the

reflectingNavier–Stokes characteristic boundary condition performs correctly to introduce vorticity waves (vortices

or turbulence) and totally reflect acoustic waves. To introduce vorticity waves and let acoustic waves propagate

without reflection, the vortical-flow characteristic boundary condition is required and the usual Navier–Stokes

characteristic boundary-condition method cannot be used.

I. Introduction

D EVELOPINGaccurate boundary conditions is amajor problem
in the simulation of unsteady compressible flow problems such

as astrophysics [1,2], aeroacoustics [3–6], or combustion instabilities
[7,8]. Because acoustic waves propagate at high speed, interact with
the flow, and are not dissipated by modern high-fidelity numerical
methods, controlling their reflection or generation at boundaries has
become a first-order issue in the development of most direct
numerical simulation (DNS) and large eddy simulation (LES) codes
in these fields.

It has been recognized for a long time that the best approach to
handle such problems is to manipulate the amplitude of acoustic and
entropy waves entering the computational domain [9–11]. Most
methods are based on the same principle: they decompose the Navier
—Stokes equations at the boundary to identify the contribution of
waves going into the domain and waves leaving the domain. The
latter are computed using one-sided derivatives and are notmodified,
whereas waves entering the domain are changed according to the
boundary condition. The modification of the incoming-wave
amplitudes is themain difficulty, and this iswhere themethods differ.
Two main classes of methods can be identified:

1) For one-dimensional (1-D) methods, in some approaches, the
amplitude of the incoming waves is fixed by assuming that the flow
can be viewed locally as one-dimensional and inviscid {the local
one-dimensional inviscid (LODI) relations [9,12]}. The influence of
transverse (i.e., parallel to the boundary plane) and viscous terms is
neglected. Such methods are used, for example, in DNS [13–16] or
LES of reacting flows [17–19].

2) For multidimensional methods, the accuracy of 1-D methods is
not sufficient for multiple problems, especially at outlets in which
such methods generate noise when vortices leave the domain. In

recent years, it has been shown that taking into account transverse
terms in the specification of the incoming waves is an efficient
solution to increase the accuracy of outlet boundary-condition
treatments. Including transverse terms in the incoming-wave ampli-
tudes can be done following various ideas but is not a straightforward
task [20–22]. In most methods, a low-Mach-number expansion is
used to guide the derivation of the incoming-wave amplitude
[23,24].

Althoughmost boundary-condition studies address the problemof
outlets, the present work focuses on one specific issue that is not
discussed often: the specification of inlet conditions in which turbu-
lence must be injected while still maintaining nonreflecting
conditions. This is a critical issue inDNS of jet noise [6,25] or in LES
of combustors [8,26]: for example, when the flow entering the
computational domain must contain a resolved turbulent component
(generated to satisfy proper spectra and energy distribution), but
acoustic waves propagating back to the inlet must not reflect on this
boundary (Fig. 1). If acoustic waves generated in the combustor
reflect on the inlet and interact again with the flow, the whole system
can enter a state of self-sustained oscillations.

For such problems, there is a difficult tradeoff at the inlet in that the
boundary condition must impose the mean flow profile, inject
turbulent perturbations, and still be nonreflecting for acoustic
waves‡; for example, imposing the velocity u�x; y; z; t� in an inlet
plane to be exactly equal at each instant to a target value ut�x; y; z; t�
(corresponding to the instantaneous turbulent signal to be injected)
will obviously ensure the proper inlet turbulent flow but will also
totally reflect acoustic waves, because the inlet velocity will not
depend on outgoing waves. On the other hand, any attempt to make
the inlet section perfectly nonreflectingmight lead to an inlet velocity
drifting away from the target field.

Finding a proper compromise to define inlet boundary conditions
inwhich turbulence is injected and acoustic reflections are controlled
is the objective of the present work. To reach this goal, a new
nonreflecting boundary condition adapted to the introduction of
vortical flows and called the vortical-flow characteristic boundary
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condition (VFCBC) will be constructed on the basis of recent results
obtained by Prosser [23,24], which allow to separate wave contri-
butions due to acoustic and vorticity waves. VFCBC differs from the
original Navier–Stokes characteristic boundary-condition (NSCBC)
formulation [9], showing that the introduction of vortical flows on a
nonreflecting inlet cannot be done with methods adapted to the
introduction of acoustic waves.

The methods proposed subsequently will be compared in two
relevant test cases: introduction of a single vortex in a quiet domain
and introduction of two-dimensional synthetic turbulence in a quiet
domain.

To illustrate the acoustic behavior of each formulation, the same
test cases will then be repeated in cases in which acoustic waves
propagate back toward the inlet. This study focuses on inlets, and for
these cases, preliminary studies have shown that multidimensional
methods did not bring significant advantages. Therefore, all subse-
quent methods are based on 1-D methods.

II. Nonreflecting Inlet Boundary Condition for
Subsonic Vortical Flows

A. Local One-Dimensional Inviscid Relations at an Inlet

Consider a subsonic inlet inwhich turbulencemust be injected and
assume that the boundary plane is the x2–x3 plane. The velocity
components to impose at this inlet will be written asUt, Vt, andWt.
These target values can be obtained by running a separate 3-D solver
and reading it plane by plane usingTaylor’s assumption [27,28] or by
generating a synthetic turbulent signal based on digital filters [29,30]
or on inverse Fourier techniques [31,32]. The NSCBC procedure
[33] is one of the usual methods used to evaluate the amplitude of the
incoming waves Li. This approach is based on the assumption that
the flow is locally one-dimensional and inviscid. LODI equations
link the wave amplitudes Li and the temporal evolution of primitive
Navier–Stokes variables (�, u1, u2, u3, and p). Their expressions are
obtained through characteristic analysis of the one-dimensional
Euler equations [7,9,10]:
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The wave amplitudes L1, L2, L3, L4, and L5 correspond,
respectively, to the left-traveling acoustic wave (speed u1 � c), the
entropy wave (speed u1), the two vorticity waves (speed u1), and the
right-traveling acousticwave (speed u1 � c). LODI equations can be

cast for all variables. For example, the LODI equation for tempera-
ture T is
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For a subsonic inlet, four incomingwavesL2,L3,L4, andL5 must be
imposed, which is equivalent to imposing the three velocity
components ui and the temperature T. Independent of the nature of
the transverse fluctuations Vt and Wt to impose at the inlet, the
natural solution for L3 and L4 is

L3 ��
@Vt

@t
and L4 ��

@Wt

@t
(7)

These conditions are nonreflecting because they do not depend on the
outgoingwaveL1. The question is nowhow to constructL2 andL5 to
obtain a nonreflecting boundary condition for normal velocity and
temperature.

B. Determination of L2 and L5 to Inject Acoustic Waves

First, assume that the normal target velocityUt�t� (the valuewhich
u1 must take at the inlet) is due to an acoustic wave entering the
domain. Using the LODI relations (2) and (6), a natural solution is to
write

L5 � L1 � 2�c
@Ut

@t
and L2 � �� � 1�

�
L1 � �c

@Ut

@t

�
(8)

However, this boundary condition is reflecting [34]. To inject an
acoustic wave and avoid reflections, the incoming waves L5 and L2

must not depend on the outgoing waveL1, and the proper expression
for L5 is

L5 ��2�c
@Ut

@t
and L2 ���� � 1��c @U

t

@t
(9)

whereUt is still the target value. Note thatUt is now the value that u1
should follow in the absence of any reflected wave. If a wave is
reflected toward the inlet, the inlet valueu1will differ fromUt and the
inlet will remain nonreflecting.

C. Determination of L2 and L5 to Inject Vortical Flows (VFCBC)

In the case of turbulence injection, the target velocity Ut is
replaced by a signal corresponding to a vorticalflow (vortices, homo-
geneous isotropic turbulence, etc.). A first solution is to use the
boundary condition (8):

L5 � L1 � 2�c
@Ut

@t
x (10)

Condition (10) has been used successfully for academic DNS or LES
with high-order schemes and simple geometries (Guichard et al.
[27]). But for configurationswith strong acoustic phenomena such as
combustion in a gas turbine, a nonreflecting condition is often
required. Condition (9) is an obvious possibility, whichwill be tested
subsequently; results will show that values for velocity and vorticity
obtained with condition (9) do not match the expected values.
Therefore, a better condition was sought.

First, the reason that condition (9) may not be adapted for
turbulence injection must be understood: both turbulence and acous-
tic waves produce velocity and pressure perturbations, but inter-
preting turbulence effects (which are essentially incompressible)
such as acoustic waves [as done in both Eqs. (9) and (10)] is the
source of the problem. This question has been analyzed recently in
multiple papers, even though no unique solution was identified
[20,23,35]. For example, by distinguishing acoustic from inertial
contributions and performing an expansion in Mach number on the
Euler equations, Prosser [23] showed that the interaction between
inertial structures (turbulence) and acoustic appears for the zeroth-
order velocity terms and for the second-order pressure terms.

This result allows a simple derivation of a new boundary condi-
tion (VFCBC) to inject turbulence without acoustic reflection or

Fig. 1 Combustor nonreflecting inlet: turbulence must be injected, but

acoustic waves must be able to leave with limited reflections.
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interaction. If we only consider the zeroth-order terms and assume
that vortical-flow injection creates no acoustic pressure, the Mach
number expansion of Prosser [23] for the equations of u1 and p
becomes

@u1
@t
� u1

@u1
@x1
� 0 and

@p

@t
� 0 (11)

Equation (11) provides an evaluation of the wave amplitudes
needed in NSCBC for an injection of turbulence (at low speed and
low Mach number). These waves are
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and so the proper expressions for the incoming waves L5 and L2 are

L5 ���c
@Ut

@t
and L2 � 0 (13)

Equation (13) shows that L5 differs by a factor of 2 from Eq. (9),
which was the nonreflecting condition for acoustic wave injection.
This is the first surprise of this derivation. A second one is that the
amplitude of the outgoingwaveL1 should be equal to�L5 according
to Eq. (12). In a subsonic flow, the amplitudeL1 depends on the flow
within the domain and cannot be fixed or assumed to take a
predetermined value like �L5. Prosser [23] explained this paradox
by recalling that the amplitudes of L1 and L5 chosen at the boundary
must be viewed as the values of L1 and L5 for the frozen turbulent
flow that is injected in the absence of any acoustic wave reflected
from the domain to the inlet section. Another way to interpret the
expression of L5 [Eq. (13)] is to view it as the sum of two contri-
butions: 1) the frozen injected turbulent flow and 2) the acoustic
contribution:

L5 ���c
@Ut

@t
� 0 (14)

where the first right-hand-side term corresponds to the frozen
injected turbulent flow and the second one corresponds to the acous-
tic contribution. This shows that Eq. (14) is actually a nonreflecting
condition for acoustics, even though the total amplitude of the
injectedwave is nonzero. Similarly, the outgoing-wave amplitudeL1

can be written

L1 � �c
@Ut

@t
� La1 (15)

where La1 is the amplitude of the outgoing acoustic waves, which
cannot be fixed because it comes from the inside of the domain. As
announced, this implies that the boundary conditions must differ
when injecting acoustic waves (which are compressible signals in
which p and u1 signals always are of the same order: p ’ �cu1) or
when injecting turbulence (for which pressure perturbations scale
like theMach number and vanish, in comparisonwith�cu1, when the
Mach number is small).

To summarize, Table 1 shows that three types of boundary
condition can be used to inject perturbation at an inlet:

1) Method 1 is the reflecting NSCBC formulation.
2) Method 2 is the nonreflecting NSCBC formulation.
3) Method 3 is the nonreflecting VFCBC formulation.

The next sections compare these three methods in various
reference cases.

III. Simple Test Case: Injection
of a 2-D Inviscid Vortex

To illustrate the demonstration of the precedent section and to
compare the methods of Table 1, the configuration of a 2-D inviscid
vortex entering a box is first tested. This is the simplest test case of
vortical-flow injection and its analytical solution can be easily
explicited for comparison with simulations.

A. Single Vortex Problem

The velocity field of a vortex convected by a steady flow �u�
� �U1; 0�� is defined using the stream function:
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where r�
������������������
X2
1 � X2

2

p
, C is the vortex strength, and rv is a

characteristic radius. FromEq. (16), the radial and tangential velocity
fields are given by
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and the distribution of vorticity is
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Themomentum equation shows that such a vortexmust have a radial
pressure distribution that satisfies
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Assuming that the flow has a constant speed of sound c, the expres-
sion for pressure can be derived as [23,36]
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These results are expressed in a frame of reference (X1, X2)
attached to the vortex. In the absence of viscous dissipation, this
analytical solution can be used for validation. For this test case, the
computational domain is a 2-D square boxL � L. Periodic boundary
conditions are defined on the edges x2 �	L=2. To avoid any
discrepancies due to the interaction between the vortex and the
periodic edges, the stream function is periodized:
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where rk �
������������������������������������
X2
1 � �X2 � kL�2

p
. In the limit p!1, the stream

function  becomes periodic.

B. Test-Case Conditions

The computational domain is a 2-D square box of dimen-
sion L� 1 mm and of resolution 1282. Fluid is air at ambient

Table 1 Incoming-wave amplitudes L2 and L5 for subsonic flows for steady state and

vortical-flow injection

Method Steady state Vortical-flow injection

1: NSCBC reflecting L5 � L1 L2 � 0 L5 � L1 � 2�c @U
t

@t
L2 � �� � 1��L1 � �c @U

t

@t
�

2: NSCBC nonreflecting L5 � 0 L2 � 0 L5 ��2�c @U
t

@t
L2 ���� � 1��c @Ut

@t

3: VFCBC L5 � 0 L2 � 0 L5 ���c @U
t

@t
L2 � 0
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pressure p0 � 1013 hPa, and temperature T0 � 300 K. C is set to
5 � 10�3 m2=s, leading to a maximum vortex induced velocity of
30 m=s; rv is 0.1 mm; and the mean velocity �U1 is 100 m=s. For this
test case, setting p� 5 in Eq. (21) is enough to ensure a good
periodicity of the flow at x2 �	L=2.

A two-step Galerkin finite element scheme is used to compute
convective terms in Navier–Stokes equations. This scheme is called
two-step Taylor–Galerkin version C [37] and is combined with a
two-stepRunge–Kuttamethod for time integration. It is third order in
space and time and has a low dissipative error.

C. Results

Figures 2 and 3 show a series of vorticity and pressure contour
plots comparing the new boundary condition VFCBC (method 3)
with the two NSCBC approaches (methods 1 and 2). Figure 4
presents the evolution of the vorticity and the pressure dropwith time
at the inlet of the domain. TheNSCBC reflecting boundary-condition
solutionmatches the analytical solution perfectly. In contrary, strong
deformations of the contour plot are observed in the NSCBC
nonreflecting case, showing that this boundary condition is not
adapted to inject a vortical wave. TheVFCBC approach significantly

Fig. 2 Vorticity contours !�s�1�.
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reduces the observed errors. Pressure and vorticity contours remain
symmetrical as the vortex traverses the boundary. In Fig. 4a, the
vorticity curve matches the analytical solution perfectly. Only an
underestimation of the pressure drop by 10 to 15%can be observed in
the center of the vortex.

IV. Spatially Decaying Turbulence
in a 2-D Periodic Box

The test case of the spatially decaying turbulence has been retained
to evaluate the ability of the three methods of Table 1 to impose
turbulent inlet boundary conditions, respecting correct statistics. In

practice, at every time step, an homogeneous isotropic turbulent flow
is injected at the inlet of a 2-D square box. This section first explains
the methodology used to compute the synthetic turbulent signal
entering the domain and then compares instantaneous turbulent
fields and statistics for the three methods: reflecting NSCBC
(method 1), nonreflecting NSCBC (method 2), and VFCBC
(method 3).

A. Methodology for the Turbulence Injection

To generate the artificial turbulent flow entering the periodic
domain, an extension of the Kraichnan method [38,39] was derived.

Fig. 3 Pressure contours P � P0 in pascals.
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The flow is directly written in physical space, but instead of
decomposing the velocity field in Fourier modes, a formulation
based on the stream function is used to make it periodic. The turbu-
lent flow is described as the sum of N periodic Gaussian vortices
randomly placed in a 2-D box of dimension L1 � L2. Periodicity is
ensured by summing the stream function over 2p� 1 boxes (p
boxes over and p boxes below the computational box). Therefore,
the stream function is written

��x1; x2� �
XN
n�0

 n�x1; x2� with

 n�x1; x2� � Cn
Xp
k��p

exp

�
� rk2n
2r2vn

� (22)
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������������������������������������������������������������������
�x1 � x1n�2 � �x2 � x2n � kL2�2

p
To ensure homogeneity, the position of each vortex �x1n; x2n� is
chosen from a 2-D uniform distribution. The vortices’ strengths Cn
and the inverse values of the characteristic radii r�1vn are generated
using isotropic Gaussian distributions of standard deviations C0 and
r�1v0 . The parameters C0 and rv0 must be set so that the desired length
scale and turbulent intensity would be obtained in the limitN !1.
Using Eq. (22), the velocity field u and the vorticity field ! can be
easily calculated, as well their statistics. Assuming thatN !1 and
rv0 
 L1 and L2, it can be shown that the expressions of the

turbulent kinetic energy K0 and the dissipation rate �0 are

K0 �
� �u021 � �u022 �

2
� �NC

2
0

2L1L2

and �0 � 2�0 �!
02 � 4�0

K0

r2v0
(23)

Figure 5a presents a vorticity field generated with this technique in
a 2-D square box of dimension L� 1 mm. The parameter for this
example are N � 10000, p� 5, rv0 � 5:10�5 m, and K0�
100 m2=s2. The grid resolution is 1282. As expected, the periodicity
on the box edges x2 �	L=2 is respected. Figure 5b shows the
statistic distribution of u01 and u

0
2. For this number of vortices, the

flow has a good degree of isotropy.
This frozen turbulence is injected in the domain at the mean

velocity �U1 using Taylor’s assumption. Note that this method does
not require any inverse Fourier transform or digital filter algorithm,
which makes it very simple to implement in a solver to generate 2-D
turbulent boundary conditions. Moreover, it does not require the
construction of a two-dimensional turbulent field: only the flow on
the inlet patch is computed at every time step. This is another
advantage in terms of memory usage.

B. Results

The domain is a 2-D square box of dimension L� 1 mm with a
resolution of 1282. The spanwise direction is periodic. A reflecting
boundary condition is imposed on the outlet [9]. Numerical methods
are the same as in Sec. III.B. The configuration can be viewed as a
simple model for the inlet pipe of a combustor. Fluid is air at ambient

a) b) 

Fig. 4 Evolution of vorticity and pressure versus time at the inlet of the computational domain (x1 � 0 and x2 � 0).
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Fig. 5 Example of a 2-D periodic turbulent field generated with the potential method in a 1 � 1 mm box.
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Fig. 6 Vorticity and pressure fields t� 40 �s.
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pressure p0 � 1013 hPa and temperature T0 � 300 K. The mean
velocity is �U1 � 100 m=s. The simulation duration corresponds to a
physical time T � 5� �U1=L�. Therefore, the dimensions of the box
containing the injected turbulent flow are L1 � 5L and L2 � L. The
other parameters are N � 50; 000, p� 5, rv0 � 5:10�5 m, and
K0 � 100 m2=s2.

Figure 6 presents instantaneous vorticity and pressurefields for the
three methods. Vorticity fields are nearly identical for the VFCBC
and the reflecting NSCBC simulation, whereas the nonreflecting
NSCBC simulation generates higher levels of vorticity. Conclusions
concerning pressure are similar. The reflecting NSCBC (method 1)
and VFCBC (method 3) simulations generate very low pressure
fluctuations (less than 500 Pa), whereas the nonreflecting NSCBC
simulation (method 2) leads to longer pressure oscillation levels.

The averaged properties of the turbulent field are displayed in
Fig. 7. First, for the reflecting NSCBC and the VFCBC methods,

the injection levels of the kinetic energy K and dissipation rate �
correspond to the theoretical values K0 and �0 given by Eq. (23).
Turbulence decays along the streamwise direction for the two
methods. On the other hand, the nonreflecting NSCBC method
presents important discrepancies. The levels of � and K at x1 � 0
are more than twice the theorical values K0 and �0; just down-
stream of the inlet (x� 0:1 mm), the curve of K presents a non-
physical production of kinetic energy. It is also of interest to
analyze pressure fluctuations for the three methods. The order of
pressure fluctuations in a turbulent flow is typically equal to �u021 .
It is very low in comparison with an acoustic wave, in which
pressure perturbations scale like �cu01. Therefore, for a compress-
ible solver, it is crucial that the formulation of the turbulent inlet
boundary condition generates as little noise as possible. Figure 7c
presents the streamwise evolution of the pressure fluctuations
normalized with the turbulent dynamic pressure �0K0 for the
three methods. Results observed on the instantaneous pressure
fields (Fig. 6) are confirmed: the nonreflecting NSCBC simula-
tions (method 2) generates abnormal levels of pressure fluctua-
tions in the whole domain. The VFCBC (method 3) and the
reflecting NSCBC methods (method 1) significantly improve
these results.

V. Acoustic Properties of Inlet Boundary Conditions

The two previous sections demonstrate similar abilities for the
VFCBC (method 3) and the reflecting NSCBC (method 1)
formulations to inject vortical flows with correct dynamic statistics
(K; �; . . .). The two methods, however, have different acoustic
behaviors. The reflecting NSCBC inlet totally reflects acoustic
waves, whereas a VFCBC formulation is written so that acoustic
waves can leave the computational domain. This section illustrates
the latter key point. In the two previous sections (vortex and
turbulence injection), boundary conditions were tested by injecting
vortical flows into a quiet domain. In the present section, the same
tests are repeated but the domain is not quiet anymore: acoustic
perturbations are added to investigate their effects on the inlet
boundary condition.

A. Injection of a 2-D Inviscid Vortex with an Acoustic Disturbance

For this test, an acoustic wave propagating toward the inlet
interacts with a vortex entering the computational domain. The
vortex characteristics and the computational domain are similar to
the first section. The initial acoustic perturbation has a Gaussian
shape and is centered in the middle of the studied domain. It
corresponds to a left-traveling wave inwhich fluctuations of pressure
and speed at time t� 0 are such that

pac ���0c0uac (24)

where pac � pac0f�x� and f�x� is a Gaussian perturbation,

f�x� � exp

�
� �x1 � x10�

2

�2

�
so that

uac ��
pac0

�0c0
f�x� � �uac0f�x�

For this problem, pac0 � 1000 Pa and uac0 � 2:44 m=s.
Figures 8 and 9 show a series of vorticity and pressure contour

plots comparing the new boundary condition VFCBC with the two
NSCBC approaches (reflecting and nonreflecting). The scales are the
same as in Figs. 2 and 3. In Fig. 9, positive pressure variation
contours are represented with dashed lines to visualize the wave
front. As expected, the acoustic wave is reflected by the inlet in the
case of the reflecting NSCBC method (Fig. 9a), whereas there is no
reflection in the case of the two nonreflecting NSCBC and VFCBC
methods (Figs. 9b and 9c). The NSCBC nonreflecting method
(method 2) is again disqualified by this test case. In Figs. 8b and 9b,
the vortex contours are strongly disturbed by the inlet and the

c) Normalized pressure fluctuations

b) Normalized dissipation rate

a) Normalized turbulent kinetic energy K/K0

Fig. 7 Streamwise evolution of the mean properties of the turbulence.

Comparison of the three boundary conditions.
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acoustic wave. The NSCBC reflecting condition (method 1) solution
is also affected by the presence of the acousticwave: after the passage
of the acoustic perturbation, deformations appear on the vorticity
contours (Fig. 8a). The VFCBC method (method 3) seems to be less
sensitive to the perturbation. The solution is only disturbed for a short
moment when the vortex and the wave interact.

B. Interaction Between Spatially Decaying Turbulence and a

Harmonic Acoustic Wave

To investigate turbulence injection in the presence of acoustics,
the outlet pressure is pulsated and harmonic acoustic waves

propagate from the reflecting outlet to the inlet in which turbulence is
injected. The parameters of the injected turbulence and the
computational domain are the same as for the second test case
(Fig. 10). The acoustic excitation induces a pressure perturbation pac

on the outlet x1 � L:

pac�L; x2; t� � pac0 sin�2�f0t� (25)

where f0 is the frequency of the acoustic wave. For this problem,
f0 � 259500 Hz and pac0 � 1000 Pa. The value of f0 corresponds
to the three-quarter-wave mode of the computational box.

Fig. 8 Vorticity contours !�s�1�.
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f0 �
3c0
4L

(26)

This frequency is chosen to mimic cases in which turbulence may
have to be injected in a resonant flow.

Using a reflecting or a nonreflecting inlet has a great importance
for this test case. For the nonreflecting NSCBC (method 2) and
VFCBC (method 3) simulations, the acoustic wave pulsated at the
outlet x1 � L propagates toward the inlet x1 � 0 and leaves the
domain. There is no reflection and no acoustic wave travels back to
the outlet. Therefore, the acoustic pressure is given by

Fig. 9 Pressure contours P � P0 in pascals.

Fig. 10 Sketch of the test case.
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Fig. 11 Vorticity and pressure fields of the turbulent flow interacting with a harmonic acoustic wave: t� 40 �s.
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pac�x1; x2; t� � pac0 sin

�
2�f0t�

k0
1 �M �x1 � L�

�
(27)

where k0 � 2�f0=c0. The rms acoustic pressure
�������
�p2
ac

p
is constant

and equal to pac0=
���
2
p

.
In the case of the reflecting NSCBC method (method 1),

waves are reflected on the extremities of the box. The superposition
of the waves propagating in the two directions generates the
development of a stationary longitudinal mode. Spatial and temporal
variations may be decoupled by writing

pac�x1; x2; t� �R�p!�x1�e�2�if0t� (28)

where i2 ��1, p! is a complex number and R�� designates the
real part of a complex number. For a lowMach number (M � u1=c0)
and for acoustically closed boundary conditions [uac�x1 � 0� � 0
and pac�x1 � L� � pac0 sin�2�f0t�], an analytical solution for p!
exists:

p!�x1� � pac0

ei��x1 � ei��x1
ei��L � ei��L (29)

where �� � 2�f0=��M � 1�c0� and �� � 2�f0=��M� 1�c0� are
the wave numbers for the acoustic waves, respectively, propagating
toward the inlet and the outlet. The rms acoustic pressure is not
constant, but depends on x1:

�������
�p2
ac

p
�x1� �

����������������������������
p!�x1�p�!�x1�

2

r
(30)

where p�!�x1� is the conjugate complex of p!.
Figure 11 presents instantaneous vorticity and pressure fields

for the three methods. Vorticity fields in Figs. 6 and 11 are iden-
tical. Contrary to the turbulent flow, the acoustic wave is a 1-D
fluctuation and it does not produce any vorticity. Differ-
ences between the two test cases actually appear on the pressure
fields. In Fig. 11, the acoustic 1-D pressure field pac is disturbed by
pressure contribution due to the turbulent flow. To more
quantitatively evaluate the contributions of the two phenomena,
pressure profiles at x2 � 0 and t� 40 	s are plotted in Fig. 12.
In Fig. 12a, the reflecting NSCBC solution is compared with
the stationary longitudinal mode calculated with Eqs. (28) and (29).
In Figs. 12b and 12c pressure profiles obtained with the non-
reflecting NSCBC and VFCBC methods are compared with the
acoustic plane wave propagating toward the inlet [Eq. (27)]. For
the reflecting NSCBC method and VFCBC, the contribution
of the turbulent flow to the pressure fluctuations is low and the
pressure profile is very close to the acoustic pressure. Moreover,
turbulence injected with the nonreflecting NSCBC is very noisy and
turbulent pressure fluctuations reach the same level as the acoustic
pressure.

Figure 13 presents the average properties of the flow versus
distance to the injection plane. For the nonreflecting NSCBC and
VFCBC methods, the kinetic energy K0 is not disturbed by the
acoustic wave: the acoustic velocity uac0 created by the pulsation is
much smaller than the turbulent velocity of the flow and does not
modify K0 significatively. In the case of the reflecting NSCBC
simulation, the three-quarter-wave mode locally generates high
levels of acoustic velocity fluctuations that modify the field of kinetic
energy (Fig. 13a). As expected, the dissipation rate in Fig. 13b is
identical to the test case without acoustic pulsation for all three
methods, because the pulsating outlet induces a 1-D acoustic wave
that does not generate vorticity.

For this test case, the average fluctuating pressure in Fig. 13c
is normalized by pac0=

���
2
p

. Contrary to the velocity, the acous-
tic perturbation generates much higher pressure fluctuations than
the turbulence. Typically, for the VFCBC method, pressure
fluctuations remain nearly constant and equal to the theoretical
value pac0=

���
2
p

, corresponding to the solution of the acoustic
problem with a nonreflecting inlet. The nonreflecting NSCBC

method creates levels of pressure that are too high in comparisonwith
the theory. These discrepancies may be explained by the fact that this
boundary condition generates levels of turbulent pressure
fluctuations that are not negligible compared with the acoustic
pressure fluctuations. The theoretical curve corresponding to the
three-quarter-wave mode is shown by a solid line in Fig. 13c. It
matches the curve corresponding to the reflecting NSCBC
simulation. Differences only occur when the average fluctuating
pressure is close to zero and reaches the same order as the turbulent
dynamic pressure �K0.

a) NSCBC (Reflecting)

b) NSCBC (Non-reflecting)

c) VFCBC (Non-reflecting)

Fig. 12 Streamwise evolution of the mean properties of the turbulent

flow coupled to the harmonic wave f0. Comparison of the three boundary

conditions.
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VI. Conclusions

Introducing turbulent fluctuations in DNS or LES is required for
multiple applications. This task becomes difficult in compressible
solvers in which boundary conditions must allow turbulence injec-
tion but also control of acoustic waves. This paper compares three
boundary conditions for compressible solvers to inject vortices or
turbulence through an inlet while controlling reflections (all methods
use characteristic approaches):

1) Method 1 is a fully reflecting method based on the NSCBC
technique.

2) Method 2 is a fully nonreflecting method based on the NSCBC
technique; this method is the classical perfectly nonreflecting
approach for acoustic waves.

3) Method 3 is a new nonreflecting method called VFCBC
(vortical-flow characteristic boundary conditions) which was devel-
oped for this work.

The three methods are systematically compared on two cases of
growing complexity: 1) a two-dimensional vortex entering a quiet
domain and 2) a two-dimensional synthetic turbulent flow entering a
quiet domain.

Tests are then repeated by adding an acoustic wave interacting
with the inlet for the 2-D vortex and a harmonic wave injected by the
outlet for the turbulent case. Results show that method 2, which is
well suited to let acoustic waves propagate through an inlet without
reflections, is not adapted to introducing vortices or turbulence: the
vorticity field is distorted during the vorticity wave introduction.
Method 1 allows introducing vortices or turbulence, but totally
reflects any acoustic wave hitting the outlet at the same time.
Method 3 performs as well as method 1 for vorticity waves, but
allows outgoing waves to leave the domain without reflections.
Methods 1 and 3 are simple to implement and should be useful for
LES and DNS of compressible flows such as jet noise, cavity noise,
combustion instabilities in combustion chambers, etc.
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